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Escherichia coli (E. coli) is a widely used indicator of fecal
contamination in water bodies. External contact and subsequent
ingestion of bacteria coming from fecal contamination can
lead to harmful health effects. Since E. coli data are sometimes
limited, the objective of this study is to use secondary
information in the form of turbidity to improve the assessment
of E. coli at unmonitored locations. We obtained all E. coli
and turbidity monitoring data available from existing monitoring
networks for the 2000-2006 time period for the Raritan River
Basin, New Jersey. Using collocated measurements, we
developed a predictive model of E. coli from turbidity data.
Using this model, soft data are constructed for E. coli given
turbidity measurements at 739 space/time locations where only
turbidity was measured. Finally, the Bayesian Maximum
Entropy (BME) method of modern space/time geostatistics
was used for the data integration of monitored and predicted
E. coli data to produce maps showing E. coli concentration
estimated daily across the river basin. The addition of soft data
in conjunction with the use of river distances reduced
estimation error by about 30%. Furthermore, based on these
maps, up to 35% of river miles in the Raritan Basin had a probability
of E. coli impairment greater than 90% on the most polluted
day of the study period.

Introduction
Fecal Indicator Bacteria in River Systems. Fecal indicator
bacteria (FIB) provide important health and ecological
information for many river basins. Although FIB’s themselves
are not harmful, their presence in streams suggests that
pathogenic microorganisms might also be present, leading
to possible human health risks. Diseases and illnesses that
can be contracted in water with high fecal contamination
include typhoid fever, hepatitis, gastroenteritis, and dysentery
(1). The most commonly tested FIBs are total coliforms, fecal

coliforms, Escherichia coli (E. coli), and enterococci. E. coli is
a species of fecal coliform that is specific to fecal material
from humans and other warm blooded animals. Based on
studies conducted by the Environmental Protection Agency
(EPA), E. coli is the best indicator of health risk from water
contact in recreational waters (2). Therefore many states are
now measuring E. coli instead of total coliforms to assess
streams for fecal contamination. However, because of the
limited scope of existing monitoring networks, budget
limitations, and manpower constraints, it is difficult to assess
all river miles. The purpose of this study is to examine the
use of a modern spatiotemporal geostatistics technique,
known as Bayesian Maximum Entropy (BME), to statistically
assess E. coli’s presence in both monitored and unmonitored
streams using not only existing E. coli data but also integrating
secondary information in the form of turbidity measurements
to further improve the mapping of basin-scale fecal indicators.

Autocorrelation in E. coli. Geostatistical techniques such
as kriging rely on the fact that many natural phenomenon
exhibit spatial autocorrelation. Monitoring stations along the
same stream, for example, tend to report similar physical
and chemical characteristics. Kriging methods construct a
regional model of correlation to estimate variables, such as
E. coli, at unsampled locations based on data from sampled
locations (3-5). Cokriging, subsequently, uses not only the
spatial correlation of a single variable, but also the correlations
associated with other environmental variables. There have
been numerous examples of cokriging for environmental
variable estimation ranging from soil salinity, suspended
sediment, and rainfall, to regional stream quality (6-9). It is
most beneficial where the primary variable is under-sampled
with respect to the secondary variable, as is the case for this
study when examining E. coli and turbidity as secondary
information. Generally the inclusion of secondary informa-
tion results in more accurate local predictions than when
considering a single variable alone (6, 10).

A more general approach, and the approach used in this
study, to estimating at unsampled locations is the BME
method of modern space/time geostatistics (11). This method
accounts for both spatial and temporal correlations between
data points. BME has been successfully applied to a variety
of environmental issues, including water quality (12, 13). As
demonstrated in these studies, BME presents the flexibility
of providing the space/time kriging methods as its linear
limiting case, while it can be expanded to a nonlinear
estimator if other nonlinear knowledge bases (e.g., soft data,
non-Gaussian distribution, etc.) need to be considered. In
addition, the BME approach has recently been updated with
river-based functionality to incorporate river distance instead
of the typical Euclidean distance when dealing with river
parameters. Several studies have noted that river distances
might provide more appropriate models for the spatial
autocorrelation of water quality along river networks (9, 12).
Therefore a major component of this study is to determine
whether the use of river distances along with turbidity as a
secondary variable, improves our estimation of E. coli for
unmonitored stream reaches.

Turbidity and E. coli. Turbidity is the expression of the
optical property that causes light to be scattered and absorbed
rather than transmitted with no change in direction of flux
level through the sample (14). It is related to E. coli
concentration in that research has shown that FIBs are
oftentimes associated with particulate matter in the water
column and transport of fecal bacteria via suspended
sediments is an important aquatic mechanism (1, 15).
Numerous studies have examined the relationship between
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turbidity and E. coli and found significant correlation between
both parameters (16-19). Our study area contained a larger
number of measured turbidity values relative to E. coli,
therefore turbidity was chosen as a secondary variable.

Experimental Section
Study Area and Data. The area under investigation is the
Raritan River Basin in north-central New Jersey (Figure S1,
Supporting Information). The basin is 1100 square miles and
consists of 36% urban, 19% agriculture, 27% forest, and
approximately 17% wetland/water land uses. Approximately
1.2 million people live within this basin and both fecal
coliforms and turbidity have been cited as major resource
concerns (20). Water quality data for the Raritan Basin was
obtained through the National Water Information System
(NWIS), maintained by the United States Geological Survey
(USGS) for the period January 1, 2000-December 30, 2007.
A total of 44 monitoring stations provided 579 space/time
data points for measured E. coli while 118 monitoring stations
yielded 739 measurements of turbidity for the study period.
E. coli data were log-normally distributed with a mean of 5.4
log-colony forming units (cfu)/100 mL.

Generation of Soft Data. One of the primary goals of this
research is to introduce a secondary variable, in the form of
turbidity, to predict E. coli concentrations in areas where
there are no direct E. coli measurements. These predicted
values are referred to as “soft” data because of the uncertainty
associated with the predicted values. There are two types of
soft data employed in this study, probabilistic and interval.
To construct the probabilistic soft data, we used a total of
27 collocated samples of turbidity and E. coli. First, a simple
linear regression was performed using log-transformed data
to determine an initial correlation (r2 ) 0.54) which was
consistent with other studies relating turbidity to E. coli or
fecal coliform concentration (16-19). Because of the limited
number of collocated points and relatively low values of
turbidity represented, the final least-squares predictive model
for E. coli is a continuous piecewise function containing the
linear relationship along with a polynomial model of order
2 to reduce overestimation of E. coli at extremely high
turbidity values:

where log E. coli is expressed in log cfu/100 mL, and log-
turbidity (z) is expressed in log NTU. Using this relationship
the log-E. coli prediction error variance was calculated using
the mean of the squared differences between predicted and
measured log E. coli for a series of given windows of log
turbidity values. Finally, for every space/time point where
log turbidity (but not necessarily log E. coli) was measured,
a Gaussian probability distribution function (PDF) was
constructed for log E. coli with a mean given by eq 1 and a
variance corresponding to the prediction error variance at
the measured log turbidity. This mean and variance were
then used to construct soft log E. coli data of Gaussian
probabilistic type at 739 space/time points.

We also accounted for the uncertainty associated with
the direct measurements of low levels of E. coli. The data
downloaded from the USGS use the membrane filtration
(m-Tec) method for bacteria enumeration and several
intercalibration studies suggest (0.5 log as a working point
to account for measurement error (21, 22). Therefore, for
any measured log E. coli < 2 log cfu/100 mL in this study,
interval soft data were introduced in the general form of eq
2, where a ) measured log E. coli - 0.5 and b ) measured
log E. coli + 0.5. This resulted in an additional 15 soft data
points.

Bayesian Maximum Entropy Framework. To integrate
the soft data with the measured log E. coli values and then
estimate at unmonitored locations, the BME method of
modern space/time geostatistics is used. BME provides a
rigorous mathematical framework to process a wide variety
of knowledge bases characterizing the space/time distribu-
tion and monitoring data available for log E. coli, and obtain
a complete stochastic description at any unmonitored space/
time point in terms of its posterior PDF. The BME method
was introduced by Christakos (11), and a detailed description
of the conceptual underpinnings of the BME framework are
provided in Christakos (23, 24), while its BMElib numerical
implementation is described in Serre et al. (25), Serre and
Christakos (26) and Christakos et al. (27). BMElib, version
2.0b, with river functionality was used in this analysis. It was
written using the MATLAB R2000a programming platform.
Details about the implementation of river distance calcula-
tions in BMElib are provided in Money et al. (28). The BME
procedure consists of defining the general knowledge (i.e.,
covariance), site specific knowledge (i.e., monitoring data),
and integrating the two to calculate a posterior PDF. Site
specific knowledge includes both hard data (e.g., measured
values) and soft data (i.e., log E. coli predictions based on
turbidity). By way of summary, BME uses the maximization
of a Shannon measure of information entropy and an
operational Bayesian updating rule to process the general
and site specific knowledge bases, and obtain the posterior
PDF describing log E. coli concentration at any unsampled
point of the river network.

Covariance Model Selection. An important aspect of this
work is to select a covariance model that uses river distances.
We restricted our mapping analysis to rivers that can be
represented by a directed tree consisting of a set of
downstream-combining stream reaches (Figure 1), which is
highly relevant for the Raritan River considered in this study.
Each stream reach is identified by a unique stream reach
index i, and we let V be the set of all stream reach indexes:
V ) {1, 2,...}. We define the longitudinal coordinate l of a
point on the river network as the length of the continuous
line connecting the river outlet to that point along the river
network (by convention, negative l values represent fictitious
locations downstream of the outlet). A point r ) (s, l, i) on
the river network is uniquely identified by either its spatial
coordinate s ) (s1, s2) or its river coordinate (l, i) identifying
the longitudinal coordinate l and the reach index i where the
point is located (Figure 1). Using this convention to define
points along a river network, we consider two classes of
covariance models that incorporate river distances.

The first class of models to consider are isotropic river
covariance models, which can be expressed as a function of
the distance between two points r and r′, that is, cov(r,r′) )
c(d(r,r′)), where d(r,r′) is a distance metric. An important
member of this class is the isotropic exponential-power river
covariance model introduced by Money et al. (28, 29)

where dR(r,r′) ) RdR(r,r′) + (R - 1)dE(r,r′) is a linear
combination of the river distance (i.e., shortest length along
the river connecting r and r′) dR(r,r′) and the Euclidean
distance (i.e., straight-line distance) dE(r,r′), and ar is the
overall spatial range. This covariance model is permissible
for any directed tree river network for (R ) 0, � ∈ [0, 2]) or
for (R ) 1, � ) 1) (28, 29).

Another important class of river covariance models are
flow-connected covariance models, which are a function of
both river distance and flow. We introduce here a novel

log E. coli ) {2.07z2 - 0.02z + 2.08 z < 0.6
2.05z + 1.57 z g 0.6

(1)

Prob[a < log - E. coli < b] ) 1 (2)

cov(r, r') ) exp(-(dR(r, r')/ar)
�), 0 e R e 1 and 0 < � e 2

(3)
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(although modest) generalization of the flow-connected
covariance model introduced by Ver Hoef et al. (30). We let
ω(r) be a positive density function characterizing the flow
entering the river per unit stream length along the river
network, and we refer to its corresponding flow function
Ω(r) as its integral along all flow lines upstream of r, that is,
Ω(r))∫u∈U(r)dl(u)ω(u), where is U(r) is the set of points
upstream of r, and l(u) is the longitudinal coordinate of point
u. The density function ω(r) may be obtained from overland
flow discharge if that information is available, or from a proxy
such as contributing watershed area, or it may be set to a
constant value. When ω(r) is nonzero throughout the river
network, the resulting flow function Ω(r) varies with r, as
illustrated in Figure 1. Combining ideas introduced in Ver
Hoef et al. (30), de Fouquet and Bernard-Michel (31), and
Cressie et al. (32) to construct permissible flow-connected
covariance models, we propose here to define a spatial
random field X(r) as

where W(u) is a white noise process, Y(l) is a zero mean
random process on R1 with covariance cov(Yi(l),Yi(l′))) c1(h),
h ) |l-l′|, and c1(h) may be any permissible covariance
function in R1. The covariance of X(r) provides a permissible
covariance model given by (see Supporting Information for
detailed steps)

where Ω(r,r′) ) Ω(r)/Ω(r′) if r is upstream of r′, and Ω(r,r′)
) 0 if r and r′ are not flow-connected. Ω(r,r′) is a number
between 0 and 1 that quantifies the flow connection between
r and r′. As shown in Supporting Information, the flow-
connected covariance model introduced by Ver Hoef et al.
(30) corresponds to the limiting case of eq 5 where the flow
function is constant along each reach, that is, Ω(r) ) Ω(i(r)),
and is additive at each junction so that Ω(i(r)) ) ∑j∈Vr(∞)Ω(j)
∀ r, where i(r) is the reach index of point r) (s, l, i), and Vr(∞)
is the set of the indexes of the leaf reaches (i.e., stream reaches
at the upstream ends of the river network) feeding into r.
Our covariance model (eq 5) adds the flexibility to consider
flow functions Ω(r) that increase along any given stream
reach. For example, as shown in Figure 1, this added flexibility
allows our flow-connected covariance model (eq 5) to account
for overland flow discharge between points r′ and r′′, as well
as the flow contribution of the small river reach (shown in
dotted lines) that was ignored in the representation of the
river network. This is illustrated by the fact that Ω(r′) < Ω(r′′)

in Figure 1, even though r′ and r′′ are on the same reach. This
generalization of Ver Hoef et al. (30) covariance model is
useful in situations where there are several monitoring data
points along the same stream reach.

An obvious advantage to using flow-connected models is
that they incorporate flow connectivity into the model of
autocorrelation. However, as noted by Peterson and Urquhart
(33), setting the covariance to zero when points are not flow-
connected may be a hindrance if very few monitoring sites
are flow-connected, leading to less informed estimation maps
than those produced using an isotropic covariance model.
In the case of log E. coli in the Raritan Basin, considering a
spatial range equal to the area of the basin itself, on average
only 1.6 data points were flow-connected. Therefore an
isotropic covariance model was chosen to estimate log E.
coli in the Raritan Basin. The final model used in this study
for the space/time covariance of log E. coli between space/
time points p ) (r,t) and p′ ) (r′,t′) is

where t and t′ are times, h ) dR(r,r′) and τ ) |t - t′| are the
spatial and temporal lags, respectively, and ar and at refer to
the overall spatial and temporal ranges, respectively. In this
study, we used either R ) 0 (Euclidean distance) or R ) 1
(river distance).

Comparing River and Euclidean Based Estimation. A
comparison was made between estimations using river
distance, as described above, and estimation using the typical
Euclidean distance, alongside the incorporation of soft data
from measured turbidity. Cross-validation tests were per-
formed on three different scenarios to determine the best
model for estimating basin-wide log E. coli. Each data point
was removed sequentially and re-estimated using the
remaining space/time data points. The Mean square error
(MSE) is calculated as the sum of the squared differences
between re-estimated and measured values. Scenario 1 used
the measured log E. coli data (i.e., the 15 interval soft data
points and all the hard data) with the Euclidean distance.
Scenario 2 contained the same data as scenario 1 except the
river distance was used. Scenario 3 built upon scenario 2 by
adding in the turbidity data (incorporated as the soft Gaussian
data constructed using eq 1). The method with the lowest
MSE was then used in the assessment and estimation of E.
coli for the entire Raritan Basin.

BME Estimation of Basin-Wide E. coli. Using the selected
distance metric within the BME framework we estimate E.
coli at equidistant estimation points (i.e., distributed at a
fixed interval of 0.1 km) along the Raritan River Basin network.
The network shapefiles were obtained from the NJDEP and
projected in a geographic coordinate system (NAD83) using
decimal degrees. For visualization purposes, a small buffer
(0.01 km) was overlaid using a geographic information system.
For each estimation point we select the hard and soft log E.
coli data situated in its local space/time neighborhood, and
calculate the corresponding BME posterior PDF describing
log E. coli at that estimation point. The variance of the BME
posterior PDF provides an assessment of the estimation
uncertainty, while the back-log transform of the mean of the
BME posterior PDF is used as an approximation of the median
estimator for E. coli concentrations. This is then used to
produce chloropleth maps of estimated E. coli concentration,
and delineate river miles that are more-likely than-not
impaired.

Assessing Impaired River Miles. To better understand
the pattern of fecal contamination impairment and better
quantify the probability of these impairments, a criterion-

FIGURE 1. Directed tree river network represented by 3 stream
reaches numbered in circles. The small stream reaches shown
in dotted lines have been ignored in this representation. Points
r′ ) (s′, l′, i′ ) 1) and r′′ ) (s′′, l′′, i′′ ) 1) are on reach 1, and
point r ) (s, l, i ) 2) is on reach 2. The flow function Ω(r) is
shown varying as a function of r.

X(r) ) ∫u∈U(r)
dl(u)√ω(u)/Ω(r)W(u)Y(l(r)) (4)

cX(r, r') ) √Ω(r, r')c1(h) (5)

cov(p, p') ) c1 exp(-3h
ar1

)exp(-3τ
at1

) + c2 exp(-3h
ar2

)exp

(-3τ
at2

) + c3 exp(-3h
ar3

)exp(-3τ
at3

)(6)
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based space/time assessment framework is used to categorize
the fraction of river miles meeting certain probability
thresholds, as discussed in Akita et al. (12). These thresholds
give us the ability to classify the probability of violation of
a standard for any space/time estimation point based on the
BME posterior PDF of log-E. coli. We set our standard for E.
coli concentration at 235 cfu/100 mL, which is the standard
set by NJDEP for primary contact recreation. Using this
standard, the probability of violation at space/time point p
is defined as the probability that E. coli > 235cfu/100 mL,
that is,

The fraction of river miles impaired on any given day of
the study period is then obtained by calculating the fraction
of equidistant estimation points for which the probability of
violation (eq 7) is in excess of some preselected probability
threshold (e.g., 90%).

Results and Discussion
Covariance Analysis. Figure 2 shows the covariance cX(h,τ)
of log E. coli obtained for the Raritan Basin. The top panel
displays cX(h,τ ) 0) which shows how the covariance varies
as a function of spatial lag h for a temporal lag τ equal to 0,
while the bottom panel displays cX(h ) 0,τ) which shows
how the covariance varies as a function of temporal lag for
a zero spatial lag. Experimental covariance values estimated
from data are shown with markers, while the covariance
models obtained by fitting eq 6 to the markers are shown
with lines. The covariance was calculated and modeled using
both a Euclidean distance (dashed line) and river distance

(plain line). The covariance model parameters obtained with
the Euclidean and river distances are summarized in table
1. The first structure of the covariance model (with parameters
c01, ar1 and at1) is similar for both Euclidean and river distance-
based models, with 50% of the total variability of log E. coli
being characterized by a fairly short-range of 30-40 km in
space and 80 days in time. This could be caused by the
variability we would expect from point-like sources of E. coli
pollution that are not constant and therefore may dissipate
over a few months. The second and third structures of both
Euclidean and river covariance models indicate that the
remaining 50% of variability in log E. coli levels is autocor-
related over longer distances and durations. As noted before,
E. coli, and fecal bacteria in general, is oftentimes associated
with suspended sediment in the water column. Because of
this association it is hypothesized that E. coli associated with
suspended sediment remains in the water at high levels for
a longer period of time than free bacteria because sediments
are retained along a stream network for long distances (15).
This phenomenon is captured in the longer spatial and
temporal ranges of the covariance models. In the Euclidean
based model, the longer range was between 100-200 km in
space and 200-500 days in time. Interestingly, for the river
based-model, the spatial ranges were anywhere from 1.5 to
2 times longer (300-400 km), suggesting that by accounting
for the river connections between points, E. coli concentra-
tions may remain correlated over much longer distances than
previously considered.

Cross-Validation Analysis. The cross-validation analysis
outlined above resulted in mean square errors of MSE1 )
2.87(log cfu/100 mL)2 for scenario 1, MSE2 ) 2.57(log cfu/
100 mL)2 for scenario 2, and MSE3 ) 1.99(log cfu/100 mL)2

FIGURE 2. Spatial (top) and temporal (bottom) covariance for E. coli in the Raritan Basin.

TABLE 1. E. coli Space/Time Covariance Model Parameters

c1
a ar1 (km) at1 (days) c2

a ar2 (km) at2 (days) c3
a) ar3 (km) at3 (days)

Euclidean 1.35 30 80 1.08 100 200 0.27 200 500
River 1.35 40 80 1.08 300 200 0.27 400 500
a c1, c2, and c3 are expressed in (log cfu/100 mL)2.

Prob[Violation, p] ) Prob[E. coli(p) > 235cfu/100mL]
(7)
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for scenario 3. Comparing scenario 1 to scenario 2, we see
that by using river distances instead of Euclidean distances,
we reduce the estimation error by about 10%, which is similar
to the reduction found in a previous study examining
dissolved oxygen in the Raritan Basin (28). If we then add in
soft log E. coli data derived from measured turbidity (scenario
3), there is an additional 24% decrease in estimation error.
Therefore by incorporating river distances along with soft
data from turbidity, the estimation error was reduced by
31% when compared to log E. coli estimation using the typical
Euclidean distance and no secondary information. This is
one of the first instances in a space/time context that river
distances and secondary information have been combined
to significantly reduce estimation error. As a result, the river-
based covariance model was deemed to be the most accurate
representation of E. coli in the Raritan Basin, and was used
in the subsequent basin-wide estimation and mapping of
fecal contamination.

Fecal Contamination in the Raritan Basin. Median
estimates of E. coli concentration were calculated for every
day of the study period between 2000-2007. A movie showing
changes in these estimated concentrations over time and
space can be viewed in Supporting Information. Figure 3
depicts the E. coli concentration on May 4, 2002, and is
representative of many of the days in this study. The squares
indicate locations of monitoring stations with measured E.

coli values and the chloropleth map shows areas where the
concentration exceeds the single sample standard of 235 cfu/
100 mL. One can see from this map and the animation that
extremely high E. coli concentrations (>600 cfu/100 mL) can
be found along the eastern side of the basin in the North and
South Branch and Lower Raritan watershed management
areas (WMA). Over the study period the Lower Raritan WMA
remained consistently contaminated with E. coli well above
the state standard for contact recreation. A large proportion
of the Lower Raritan is urban, while the NS Branch is a mix
of agricultural/forest/urban (Figure S1, Supporting Informa-
tion). Urban areas have a large concentration of potential E.
coli sources, while forested and agricultural areas have fewer
controls on surface water inputs, therefore higher E. coli
concentrations may be expected in these areas. In addition,
several hot spots could be identified in the upper Millstone
WMA that would appear and then dissipate, suggesting the
occurrence of acute point source contamination in those
areas. Figure S1, Supporting Information, illustrates the
locations of sewage receiving plants that discharge into
surface water. A large cluster of these plants in combination
with a high percentage of agricultural land in the Millstone
WMA could potentially explain these hot spots, but further
investigation is needed to identify specific sources and is
beyond the scope of this work. It should also be noted that
high E. coli concentrations were estimated in many areas
where no monitoring stations existed. In these areas,
additional monitoring strategies may be needed to capture
potential harmful levels of E. coli. On a basin-wide scale, the
average daily E. coli concentration was highly variable, with
exceedances spiking in 2003 (Figure S5, Supporting Infor-
mation).

It is also important to assess the confidence in these
estimations and describe the probability that a particular
river mile is impaired for E. coli. This information is important
for decision-makers and environmental managers when
deciding how to allocate resources and devise public warnings
of fecal contamination. Using the log E. coli posterior PDF
calculated at regularly spaced estimation points along the
Raritan, we calculated for each day of the study period the
percentage of river miles with a probability of impairment
(eq 7) greater than 90%. Figure 4 depicts these results for a
300 day window of the study period. The x-axis is the day of
estimation and the y-axis is the percentage of river miles in
the Raritan Basin that exceeded the standard with 90%
confidence. The fraction of river miles having a >90%
probability of being impaired was highly variable from one

FIGURE 4. Percentage of river miles with a probability of impairment >90%. Impairment ) exceeding the single sample standard of
235 cfu/100 mL.

FIGURE 3. Estimation of E. coli(cfu/100 mL) on May 4, 2002 in
the Raritan Basin. The NJ standard for E. coli is 235 cfu/100 mL.
NS ) North/South Branch WMA; ML ) Millstone WMA; LR )
Lower Raritan WMA.
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day to another, and reached a maximum of 35% on the most
polluted day of this time period. Figure 4 and Figure S5,
Supporting Information, show a similar trend toward high
E. coli concentrations in late 2003/early 2004, suggesting
larger than normal influences on E. coli emissions. Vidon et
al. (18) suggest that discharge and precipitation are the best
indicators of E. coli loading, they also found loading tended
to be higher in the winter/spring, which may help to account
for the higher than normal readings estimated in the Raritan
basin for this time period. Further analysis of precipitation
and discharge patterns would help to quantify these potential
influences in the Raritan. In addition, a majority of E. coli
measurements were taken in the summer months, while
turbidity measurements occurred throughout the year, which
provides crucial secondary information during the high E.
coli winter months and may further explain the accuracy
improvement that we obtained.

It should be noted that our geostatistical model can be
applied to a variety of basins with varying data density;
however, too few data can affect the covariance calcula-
tions. A minimum of 10-50 data points should exist to
construct a correlation model, and depending on the size
of the watershed, more points may be necessary. A larger
watershed with large data sets may also be numerically
challenging, something that will be expanded upon in
future work. Overall this study provides a unique spa-
tiotemporal framework for incorporating river distances
and secondary information into the basin-wide assessment
of water quality. Accuracy has been improved by over 30%
when combining river distances and turbidity as an
indicator of E. coli concentration. By constructing our
model in this way, we are better able to estimate E. coli
along unmonitored stream segments, thereby increasing
the overall number of river miles assessed and providing
environmental managers with accurate maps that not only
show the spatial and temporal distribution of E. coli but
that can also highlight areas of concern, which can be
useful when evaluating future monitoring strategies and
allocating state and local resources.
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